Will Francis Jayaram Fortin

My research aim is to extract as much quantifiable information as possible from seismic data anywhere within reach of human interaction, from the ocean interior to our deepest drilling projects (and eventually beyond). Primarily, I use and develop attribute analyses to (1) determine viability of basaltic basins for CO2 sequestration, (2) characterize sediment properties on continental margins to assess natural hazards risk, and (3) map turbulent behavior of dynamic mesoscale ocean features. (1) CO2 storage in basaltic basins: I have been examining the CO2 storage potential of Mesozoic rift basins offshore the US east coast on the Long Island Platform. Detailed prestack waveform inversion sheds insight into basin compositions, and thus the character of the rock infill and volumetric storage potential. (2) Seabed stability and slope failure: I am working with collaborators to investigate fluid overpressure off the U.S. east coast and its role in large submarine landslides. Such slides occur frequently, covering ~20% of the seafloor, and are capable of producing tsunamis along the heavily populated coast. Using advanced computational techniques like prestack waveform inversion and machine learning, we gain quantitative insight into seabed conditions and work toward a comprehensive understanding of risk associated with regional submarine landslides. (3) Seismic oceanography: My research goal is to explore energetics in the oceanic interior by mapping diapycnal diffusivity of meso- and sub-mesoscale ocean structures in conjunction with temperature and salinity profiles inverted from seismic data. I am particularly interested in regions with high internal wave activity, seamounts, and large eddies.

Fields of Interest

Marine seismic data, seismic waveform inversion, seismic oceanography, carbon sequestration and storage, rock properties from seismic

Education

Ph.D. in Geophysics, University of WyomingB.S. in Physics, Denison UniversityB.A. in Philosophy, Denison University